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The exact solution of the nonlinear equation of the unsteady filtration 
of a liquid with a free surface in a layer with variable penetrability 
in a vertical direction involves great mathematical difficulties [ 1.2 1. 

In the present article we use a theorem of comparison [ 3 1 to obtain 
simple evaluations of approximate solutions of an equation of one-dimen- 

sional filtration in a layer of variable penetrability. 

1. Let us examine the known problem of the outflow of a liquid in 
plane waves into a layer with a zero level of ground waters [ 4 1 . 

Let us assume that the coefficient of filtration is a certain given 
bounded function of the vertical coordinate k = k(z). 

The differential equation of filtration for this case has the form 

(1.1) 

where n(H) is the coefficient, variable in a vertical direction, of the 
saturation defect. &If) is clearly a finite non-negative function. 

Let us examine similarity solutions of the form 

if = H (U) (u = cc+) (1.2) 

which correspond to the case of a momentary rise in the reservoir from 

if? to Hl = 1: in the present instance it is obvious that H, = 0. 

Substitution of (1.2) into (1.1) yields 
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(1.3) 

With a coefficient of filtration which is independent of thickness 
k = k,, Equation (1.1) degenerates into the well-known Boussinesq differ- 
ential equation of filtration for the analogous boundary condition in 
the zero section. 

Equation (1.3) permits an exact solution for csrtain special forms of 
function &m. 

To obtain these solutions we will proceed in the following manner. 
Having integrated Equation (1.3) from zero to H, we obtain 

H 
dH dH 

‘P(H)du H -‘ViH)x,H=“=-+ \ 
UI,1 (If) till 

0 

II (1.4) 

1 du 
‘P (4 = - -j- dH Q (10 ( Q (II) = 

s 
IA,,1 (H) d/f ) 

0 

We took account of the fact that $(HJ dH/du = 0 when H = 0, as a 
result of the continuity of distribution of the flow of ground waters and 
the tendency of this flow toward zero, when x + m(u + m). 

At this point, if we take a relationship of the form u = u(H), we may 

determine the function $(H) and, consequently, also the law of penetra- 
bility as a function of the thickness of the porous layer. 

The above inverse method was used to find several exact solutions, on 
the basis of which we may evaluate approximate solutions. 

An analysis of the exact solutions indicates that only those functions 
of the saturation distribution which are identically equal to zero when 

u is quite large correspond to bounded non-negative values of &H). 

This latter feature is connected with the finite extent of the per- 
turbation, proved in [ 5 I for the case of the generalized Boussinesq- 
Leibenson equation, which gives a completely general statement of the 
problem. The finiteness of the velocity of propagation of the disturbance 
for similarity problems examined here will also emerge clearly from the 
following simple considerations. 

In Equation (1.4) we will let H tend toward zero; then 4(H) -+ 0, 

Q(H) + 0 (since the integral converges), and the fraction 

du 29 W) 
drf- ~ Q (I-I) (1.5) 

will become undetermined. 
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Investigation of this undetermined value yields 

u’ (0) = - 
2fp’ (0) 2lc (0) 

24 (0) m (0) = - u (0) m (0) (4.6) 

Let us assume that k(0) f 0, n(0) f 0. If the axis u were an asymp- 
totic integral curve, we would have to have u(0) = 00, u’(O) = - 00; how- 
ever, this would contradict (1.6). 

2. We will prove that through point u = 0, H = 1 there may not pass 
more than one curve corresponding to conditions 

II>O, H’<Oandlimq(H)H’=O for u-00 

Let us designate the coordinate of the saturation front by u*. If an- 
other integral curve (other than H(a)) passes through the point (0. l), 
such that H,(u) >/ H(u), (u,(H) > u(H)), there must exist a segment [O, 
uol f or which 

- H,’ (u) < -17’ (u), Ql (HI > Q W) (Ql (HI = [ u,m (H) dH (2.1) ) 
6 

From (2.2) it follows that the curve H,(u) on the segment [ 0, uu 1 
does not satisfy the integro-differential equation (1.4) and consequently 
does not satisfy the differential equation. 

Let US suppose that the integral curve HI(u) intersects the curve H(u) 
at several points ul, ug.. . , un. If, for the segment [ unu* 1 the in- 
equality H,(u) > H(u) is correct, then in [ u, u. I, contained in the 
segment, the following must apply 

1 Ql I4 1 Q (W -HI’(u)<-H’(u), Q1(H)>Q(II).--~<-yqq=(u)(‘(N) (2.3) 

and we again come to a contradiction. Thus, the curve H,(u) on the seg- 
ment [ unu,, 1 does not satisfy the integro-differential equation (1.4) 
(or the differential equation (1.3)). 

In an entirely similar way we can prove that there are no integral 
curves coming from the point (0.1) which would lie below the curve H(u) 
or intersect it so that for points u > un one obtains Hi(u) < H(u). With 
the cases we have examined, we have exhausted all possible curves pass- 
ing through the initial point (0.1) of the curve H(u): as we can see, 
not one of these curves can be an integral curve of the differential 
equation (1.3). 
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3. Equation (1.4) may be reduced to the form 

Q”=- Q 

2nr (H) cp (Ti) + m’ (H) 
-Q' 
m (4 

Differentiation with respect to H is designated by a prime. We note 
that the flux of the filtration current in the section we are examining 

is 

v  = Q!2t’11 (3.2, 

Let the differential equation 

Q” =- 
2ml (ff) (pl cH) + InI’ lN) Q' 

Q nt1 W) 

be given. 

Let US further assume that Q(H) and Q,(H) are the solutions to gqua- 
tions (3.1) and (3.3), respectively. We will assume that 

‘PI W) 6 cp W), Ul (1) = u (1) = 0, 1~~1 (H) = m (If) (3.4) 

The subsequent development is based on a theorem of comparison given 
in131. First, however, it is necessary to carry out the following 
arguments. 

If  al(H) >, u(H) on the segment [ 0, H, 1 of the H-axis, then in [Ho, 
Hm 1 , contained on that segment, - u,‘(H) >, - a’(H), Q,(H) > Q(H) and 

(b,(H) 2 &h), which contradicts condition (3.4). 

Therefore, the only such relative position of integral curves which 

is possible is u(H) and ul(H), for which n(0) >/ ~~(0). In the plane QH, 

Q’(0) > Q,(O) obviously corresponds to this latter condition. Thus, in 
every case in the neighborhood of If  = 0, the difference Q(H) - Ql is 
positive and satisfies the relationship 

Q WO - QI W = [ 0’ (0) - Ql’ (011 H + o (H) (3.5) 

Let us further assume that the integral curves intersect at one point. 
Under these conditions, when H = 1, Ql(1) > Q(l), and, since Q’(1) - 
QI’(1) = 0 according to (3.4), then either at this point or in the in- 
terval between the point of intersection and H = 1, the difference 
Q(H) - Q,(H) will have to be a minimum, i.e. 

Q” (If) - Ql” (H) > 0 (3.6) 

Having taken this into account, we obtain from (3. I) and (3.3) 
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(3.7) 

which contradicts the requirement (3.6). Furthermore, if there is a 
minimum at a point in the interval, then between H = 1 and that point 
Q”bYl - Q,“{li) = 0, which is also impossible. 

It is easy to see that, with an odd number of intersections of curves 

Q(H) and Q1(H), Q,(l) > Q(1) and the above considerations remain valid. 

With an even number of intersections in the interval [ 0.1 I , it is 
clear that there will be at least one point H = Hn, at which Q(H) - Ql(H) 
attains a minimum when Q(H) < Ql (H). When we use Equations (3.1) and 
(3.3) for this point, we can easily come to a contradiction. Thus, if we 
observe conditions (3.4) for the solutions of differential equations 
(3.1) and (3.3), we obtain the inequality 

Q W) > Ql (H) (3.8) 

Now let the two solutions Q,(H) and Qx(H) of the equations 

2mi (N) ‘pi (H) 
Q”=- Q 

lrLi’ (H) 
+ -vzi (H) -Q’ (i=l. 2) 

be known, where 

‘~1 (HI dw VI), . ., IL1 (1) = uz (1) = 0,. . ., ml (FI) -= n12 (H) - 1)) (II) (3.10) 

Let us further assume fulfilment of the following condition: 

It is obvious that 

Qz W > Q (HI > QI (ff) (3.12) 

With a proper selection of distribution curves u,(H) and u,(H) (or of 

curves Q,(H) and Q2(H)), it is possible in a number of cases to satisfy 
condition (3.11) by the inverse method given in Section 1 and, at the 

sfune time, to give a lower and upper estimate of the approximate solution 
of the differential equation (3.1), where $(H) is replaced by its 
majorant or by its minorant. 

4. Let us assume in Equation (1.1) that m(H) = mu = const, and illus- 

trate the evaluation method for that particular equation. The solution 
of examples on the basis of the more general equation (1.1) contributes 
nothing essential to the understanding of the method and at the same 
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time leads to several complications. 

Introducing a new variable u = ~q 1/2zt-1/2 (for which we retain the 
previous designation), we obtain from (1.7)) for the case n(H) = a0 

H 

cp (H) .z -$u’ udH 
s 

(4.1) 

0 

Let us specify the solution for the saturation distribution in the 
form 

u = Cl (1 - H) + cp (1 - If’) (4.2) 

and determine 4(H) from (4.1) by the inverse method. By computations 
which we will omit here, we obtain for $(H), according to Formula (4. l), 

the following value: 

(4.3) 

rp (H) = [$ cl (cl $ CP)] H + [c, (cl + c2) - $c12] H” - [$cIcz] II=‘-- [$ c?] H4 

By differentiating with respect to H, we obtain from (4.3) the follow- 
ing expression for penetrability: 

k (HI = [+ cl (~1 + cd] + [2cz (cl -I- cc) - $ cl21 H - [2c& H2 - [$ c2’] Hz (4.4) 

For the simplest cases of cl = 0 and c2 = 0, we obtain from (4.3) and 
(4.4) 

cp (H) = cs2 (H’ - +H4), k (H) = 2c2’(H - -+ H3) (4.5) 

q(H) =$c~~(H-+H~), k (H) = + cl2 (1 - 8) (4.6) 

Let us note that in the case of (4.5) the first derivative of the 
saturation at a front is equal to infinity; however, the flux at that 
point vanishes. 

Examples. Let us compare the two solutions 

(4.7) 

4,(H) corresponds to a linear change of penetrability with thickness 
from k = 1 at the base to k = 0 at the top, #Jo to a constant value of 

penetrability k = 1. 

The solution for &(H) according to (4.6) has the form 
,-- 

H1=l- 
m 0 

TX (4.6) 
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For &(ii) we obtain the solution from [ 4 I 

H2=-c~~-c)-~(~-c,‘-~j~-c)3-i... (c=l.l4277...) (4.9) 

Substituting the values HI and H, from (4.8) and (4.9) into (3.3)) we 
obtain, when u = 0, 

VI = 0.5 c2 = 0.628 
u2 - 
Ul 

= 1.256 (4.10) 

It is evident from (4.10) that the difference in the rates of the 

filtration flow is 26%. although the penetrability curves strongly differ 
from each other. 

Closer values are obtained when 

‘pz (H) = H -+I”, ‘~1 W) = $ H (4.11) 

Omitting the intermediate calculations, we obtain 

lJ2/v, = 1.13 

If Q = 2.0-1/z t112 v  is the solution of the differential equation (3.2) 
(with m = const) and condition (3.12) is fulfilled, then, for the first 
and second examples 

respectively. 

1 < vlv, < 1.256, i < vIv1< 1.13 

It follows that if, in the differential equation (3.2), $(H) is re- 

placed by its majorant or minorant, the error permitted in the calcula- 

tion of v will not exceed 26% (in the first example) and 13% (in the 
second). 

Let us select +2(H) in the form of a polynomial (4.4). whereby we 
assume 

1 
2cz (Cl + c2) - TC12 =I 0, 

1 
y Cl (Cl + 02) = 1 

The calculations for +2((H) and v2 yield the following values: 

~2 (H) = H - 0.23OH3 - 0.024114, 112 = 0.411 V?,,, I 1 

For $I (H) = H > c,f~s(H), we have, according to [ 4 I 

v1 = 0.628 T/MO /2t 
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When q&(H) = 0.746 H < q&(H) 

03 = 0.384 Jfr,,, I t 

Thus 

u,/ziz = 1.084, r2/7:3 = 1.031 

It is evident that when &(H) >, &ff) >/ &(H) the error resulting from 
the substitution of +(H) by functions +1(H) or c&(H) will not exceed 
8.4%, while when q&(H) >/ 4(H) >/ &(H) it will not exceed 3.1%. 

In conclusion, let us note that, since the unsteady filtration of gas 
is described by an equation of the form (1. l), the method we have pro- 
posed may be used in a number of cases for the evaluation of approximate 
solutions of problems of underground gas dynamics. 
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